Determination of p-y Curves and Pile Lateral Capacity by Direct Use of CPT Data

Scott J. Brandenberg, Ph.D., P.E.

Professor, Civil and Environmental Engineering, UCLA

Shawn Ariannia, Ph.D., G.E.

President, Geo-Advantec, Inc.

Outline

- Background and Motivation
- Proposed Method for CPT-Based p-y Analysis
 - PySimple3 Material Model
 - Computing p-y Properties from CPT Data
 - Partially Drained "Intermediate Soils"
 - Layer Corrections
- Analysis of Case Histories
 - Saturated Clay Site in Oakland
 - Unsaturated Clay Site in Hawthorn
 - Sandy Site at LAX

Background and Motivation

Background and Motivation

- Existing methods do not use the full CPT record, and rely on engineers to define layers.
- The CPT data contains nearly continuous information about the subsurface.
- Our objective is to develop a method to utilize the full CPT record to develop p-y elements for lateral pile analysis.

Background and Motivation

Technical hurdles:

- Develop a code to extract soil properties from CPT data (at every measurement point), and use these properties to compute p-y material properties.
- Current p-y material models are either for sand or clay. What about intermediate soils (e.g., $2.3 < I_c < 2.7$)?
- The CPT and laterally loaded piles are known to have layering effects. How do we handle those?
- Implementing a huge number of user-specified p-y elements into LPile is not practical. How do we do the calculation?

PySimple3 Material Model

- Choi et al. (2015) and Turner (2016)
 - PySimple3 material model implemented in OpenSees.

PySimple3 Material Model

PySimple3 Material Model

User Inputs for PySimple3:

- $-p_{u}$ (ultimate capacity).
- $-p_{v}$ (yield force).
- K^e (elastic stiffness).
- C (backbone shape coefficient).

$$C = \frac{(p_u - p_y)[\ln(p_u - p_y) - \ln(p_u)] + p_u[\ln(2) - 0.5] + p_y[1 - \ln(2)]}{K^e y_{50} - 0.5 p_u}$$

- Sand $(I_c < 2.3)$
 - Compute peak friction angle, ϕ' , using critical state soil mechanics framework by Robertson (2012).
 - Assume critical state friction angle, $\phi'_{cs'}$ based on soil type (e.g., 34 deg for quartz sand).

$$\phi' = \phi'_{cv} + 15.84 \left[\log Q_{tn.cs} \right] - 26.88$$

- Clay $(I_c > 2.7)$
 - Compute undrained shear strength using traditional equation $s_u = (q_t \sigma_{vo})/N_{kt}$
 - Cone factor Nkt from site-specific laboratory tests (ideal approach).
 - In absence of site-specific tests, can assume N_{kt} = 15, or use Robertson (2012).

$$N_{kt} = 10.5 + 7 \log(F_r)$$

- Use API (1993) equations for sand
- Use Matlock (1970) for clay

- Intermediate Soils (2.3 $< I_c < 2.7$)
 - Two issues: partially drained shear strength

- Intermediate Soils (2.3 $< I_c < 2.7$)
 - Two issues: partially drained shear strength
 - CPT bearing factor

- Intermediate Soils (2.3 $< I_c < 2.7$)
 - Adopted approach: Compute $p_{u,drained}$ as if soil is drained using API (1993).
 - Compute $p_{u,undrained}$ as if soil is undrained using Matlock (1970).
 - Linearly interpolate p_{ij} based on I_c .
 - Note: This assumes drainage condition for p-y analysis is the same as during CPT.

$$p_{u} = p_{u,undrained} + \frac{p_{u,drained} - p_{u,undrained}}{2.7 - 2.3} (2.7 - I_{c})$$

Initial Stiffness

- Measure V_s profile at site (ideal approach).
- Correlate V_s with q_t (last resort due to uncertainty).

$$V_{s1} = (\alpha_{vs} Q_{tn})^{0.5}$$
 $\alpha_{vs} = 10^{(0.55 Ic + 1.68)}$ Robertson (2012)

$$V_S = a \cdot q_t^b \cdot f_s^c \cdot \sigma'_v^d$$
 Wair et al. (2012)

- Compute Ke

$$K^{e} = \delta E_{s}$$

$$E_{s} = 2(1+\nu)\rho V_{s}^{2}$$

Yield Force

- We know soil becomes nonlinear at small strains (e.g., 0.001%).
- Average shear strain in soil around pile (Kagawa and Kraft 1980):

$$\gamma_{ave} = \frac{(1+v)y}{2.5B}$$

$$p_{y} = y_{yield} \cdot K^{e} = \frac{2.5B(0.001\%)}{(1+v)} K^{e}$$

Shape Parameter, C

- Compute y_{50}
- API (1993) and Matlock (1970) equations can be used, but should ideally be related to p_u and K^e .
- Turner (2016) used 2-D continuum finite element analyses to develop the following:

$$y_{50} = \frac{0.82 \, p_{ult}}{K_e}$$

Layer Correction

 CPT tip resistance represents average soil properties in zone of influence (10 to 20 cone diameters)

Ahmadi and Robertson (2011)

Layer Correction

 Lateral pile loading also exhibits a layering effect in zone of influence (about 1 pile diameter).

Yang and Jeremic (2002)

Layer Correction

Adopt Gaussian window weighting scheme

uclageo.com/CPTpy/

uclageo.com/CPTpy/


```
cptPyOutput.tcl - Notepad
File Edit Format View Help
# Script for performing lateral loading of a single pile with p-y springs along pile.
# material properties are based on CPT data using the file website www.uclageo.com/cptpy/
# Created by Scott Brandenberg (sjbrandenberg@g.ucla.edu).
wipe
model basic -ndm 2 -ndf 3
set numNodes 100
set dz 0.2
#Define Pile Nodes:
node 1 0.0 0
node 2 0.0 -0.20202020202020202
node 3 0.0 -0.40404040404040403
node 4 0.0 -0.6060606060606061
node 5 0.0 -0.8080808080808081
node 6 0.0 -1.0101010101010102
node 7 0.0 -1.21212121212122
node 8 0.0 -1.4141414141414141
node 9 0.0 -1.6161616161616161
node 10 0.0 -1.8181818181818181
node 11 0.0 -2.0202020202020203
node 12 0.0 -2.22222222222223
node 13 0.0 -2.4242424242424243
node 14 0.0 -2.6262626262626263
node 15 0.0 -2.8282828282828283
node 16 0.0 -3.0303030303030303
node 17 0.0 -3.2323232323232323
node 18 0.0 -3.4343434343434343
node 19 0.0 -3.6363636363636362
node 20 0.0 -3.8383838383838382
```

Case Histories

SITE	PREDOMINANT SOIL TYPE	LOAD TEST MEASUREMENTS	REFERENCES
Oakland California	Soft Saturated Clay, San Francisco Bay Mud	Load-Displacement at pile head, pile slope, and back-calculated p-y relations	Lemke (1997)
Hawthorne California	Stiff Partially Saturated Sandy Clay	Load-Displacement at pile head, bending moment along pile, inferred p-y relations	Lemnitzer et al (2010) Khalili Tehrani (2014)
Los Angeles International Airport	Sandy Fill	Load-Displacement at pile head	Diaz Yourman Associates, personal communications (2015)

Caltrans Test Site 4 - Oakland

Caltrans Test Site 4 - Oakland

Caltrans Test Site 4 - Oakland

Caltrans Test Site 4 - Oakland Lateral Load Test Set-Up

Caltrans Test Site 4 - Oakland Site Specific Calibration of CPT

Caltrans Test Site 4 – Oakland Shear Wave Velocity

Caltrans Test Site 4 – Oakland p-y Curves

Caltrans Test Site 4 – Oakland Initial Stiffness Variation

Site 4 - Oakland Sensitivity of Pile Response to Pu

Site 4 - Oakland Sensitivity of Pile Response to ke

Site 4 - Oakland Sensitivity of Pile Head Deflection to P_u and K_e

Site 4 - Oakland Sensitivity of Pile Head Deflection to P_v and ϵ_{50}

Hawthorne Site-Los Angeles

Simplified representation of soil undrained shear strength (Su) profile and stratigraphy at Hawthorne site (Khalili Tehrani et al., 2012)
(Lemnitzer et al., 2010)

Hawthorne Site-Los Angeles

Hawthorne Site- Los Angeles Test Set Up

The reaction block and the configuration of 0.6m diameter specimens (Khalili Tehrani et al., 2012)

Hawthorne Site-Los Angeles Site Calibration for Su and Vs

Hawthorne Site - Los Angeles

LAX Site - Los Angeles

LAX Site - Los Angeles Soils Stratification

LAX Site - Los Angeles Soils Stratification

LAX Site - Los Angeles CPT

UCLA

CPT: CPT-01

Total depth: 35.43 ft, Date: 2/7/2015 Surface Elevation: 0.00 ft

Clay to sity clay

LAX Site - Los Angeles Test Set Up

Lateral load testing set up for pile test 1 at LAX

LAX Site - Los Angeles

Pile Head Force-Displacement

Summary

- Mapping algorithm involves smoothing procedure that takes into consideration the layering effect
- Real or close to real initial stiffness of the soil at each depth
- Overcomes to the common problem of the currently in practice p-y curves by explicitly including a finite elastic stiffness and small-strain nonlinearity.
- Unlike other models, predetermination of soil type/behavior is not required.
- Predicted pile head load-displacement vs. field measurements: Good Agreement
- Predicted p-y curves from the model vs. backcalculated p-y curves from case histories: Good
 Agreement

References

- Ahmadi, M.M. and Robertson, P.K. (2005). "Thin-layer effects on the CPT q_c measurement." Canadian Geotechnical Journal. 42: 1302-1317.
- API (1993). Recommended practice for planning, design, and constructing fixed offshore platforms. API RP 2A-WSD, 20th ed. American Petroleum Institute, API Publishing Services, Washington D.C.
- Choi, J.-I., Kim, M.M., and Brandenberg, S.J. (2015). "Cyclic p-y plasticity model applied to pile foundations in sand." *Journal of Geotechnical and Geoenvironmental Engineering*, 141(5), 04015013.
- Dobry, R.M., O'Rourke, M.J., and Roesset, J.M. (1982). "Horizontal stiffness and damping of single piles." *Journal of the Geotechnical Division*, ASCE, 108(GT3), 439-459.
- Gazetas, G., and Dobry, R. (1984). "Horizontal response of piles in layered soils." *Journal of Geotechnical Engineering*, 110(1), 20-40.
- Kagawa, T., and Kraft, L.M. (1980). "Seismic p-y response of flexible piles." *Journal of the Soil Mechanics and Foundation Division*, 98(SM6), 603-624.
- Matlock, H. (1970). "Correlations for design of laterally loaded piles in soft clay." *Proc. 2nd Annual Offshore Technology Conference*, Houston, TX, 577-594.
- Robertson (2012)
- Syngros, C. (2004). "Seismic response of piles and pile-supported bridge piers evaluated through case histories." *Ph.D. Thesis*, Civil Engineering Dept., City University of New York, NY.
- Turner, B.J. (2016). "Kinematic pile-soil interaction in liquefied and non-liquefied ground." *Ph.D. Dissertation*, University of California, Los Angeles. 422 p.
- Wair, B.R., DeJong, J.T., and Shantz, T. (2012). "Guidelines for estimation of shear wave velocity profiles." *PEER 2012/08*, Pacific Earthquake Engineering Research Center, Berkeley, CA.
- Yang, Z., and Jeremic, B. (2002). "Numerical analysis of pile behavior under lateral loads in layered elastic-plastic soils." *International Journal for Numerical and Analytical Methods in Geomechanics*, 03(22), 1-31.
- Araiannia , S.(2015). Determination of p-y Curves by Direct Use of Cone Penetration Test (CPT) Data-A dissertation submitted in partial satisfaction of the requirement for the degree Doctor of Philosophy in Civil Engineering, UCLA
- Lemnitzer, A., et al. (2010), "Nonlinear Efficiency of Bored Pile Group under Lateral Loading", ASCE Journal of the Geotechnical Engineering Division, December 2010, pp. 1673-1685.
- Lemke, J., (1997)"Lateral Pile Load Test Report I-880 Replacement Project Sites 1 through 4 Oakland, California". Report Prepared for Caltrans, by Delta Geotechnical Services.

Questions?