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R In earthwork engineering the designer has to
deal with bodies of earth with a complex structure
and the properties of the material may vary from
point to point.”
K. Terzaghi
Prefce to the Inaugural Edition of
Géotechnique (1948)

“Two specimens of soil taken at points a few feet
apart, even if from a soil stratum which would be
described as relatively homogeneous, may have
properties differing many fold.”
Donald W. Taylor
Introduction to Fundamentals of Soil Mechanics
Wiley, (1948)




It is only relatively recently however, that methodologies such as the
Random Finite Element Method (RFEM) have been developed to explicitly
model the variability discussed by Terzaghi and Taylor.

Bearing Capacity

Bearing failure of a silo in
Manitoba, Canada (1913)
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1. Slope Stability Analysis by Finite Elements

« Gravity loads are applied to the mesh. soil is given simple

elastic-perfectly plastic
stress-strain model

"plastic" (¢',c’)

Coulomb

“elastic” (E',v")

£
« Compute elastic stresses and check for elements violating Coulomb

’Z'A

M<0 '
(legal) ~ M=0._ /¢

r=oc'tang’ +C’
M>0
(elastic)




 Element with elastic stresses
violating Coulomb (M < 0)

\
e Stress redistribution while
— maintaining global equilibrium
Bishop and Morgenstern (1960)
FS=1.27
_ _ SRF l
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0.00 I
c’ tan ¢’ | FS=1.27 !
C, = ¢, = arctan ¢/ o |
SRF SRF 0.10 — =
) S ay0-15 :
At failure FS = SRF 020
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“Seeking out failure”

James Bay Dike using Finite Elements

[e————60 ——— e 18—ple—— 563 ———>le—18>|e 60 >|
Units in m and kN
5 ¢ =30, ¢'=0, y =20 $,=0,¢,=41 y=20
+
H @, =0, c, =345, y =18
65 ¢, =0, c,=31.2, y =203
&2

e Failure mechanism “seeks out” the path of least resistance.

» Slope fails “naturally” through zones where the shear strength is unable to resist the
shear stresses.



Another example with a 2-layer undrained slope.

FS=1.12
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Would a limit equilibrium
method find both these
failure mechanisms?
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2) Risk Assessment in Geotechnical Engineering

Two slopes with the same factor of safety

WHAT ABOUT THE CONSEQUENCES OF FAILURE?
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Definition of RISK

Probability of Failure Baecher (1982)
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Figure 5.7 F-N chart showing average annual risks posed by a variety of traditional divil facilities
and other large structures or projects (Baecher 1982b).



A Risk Assessment study starts with a Probabilistic Analysis

Goal of a probabilistic geotechnical analysis.....?

To estimate the “Probability of failure ( p;)” as an alternative,
or complement to, the traditional “Factor of Safety ( FS)”

Alternatives might be the
“Probabillity of inadequate performance”
“Probabillity of design failure”

Some investigators prefer a more optimistic terminology.....e.g.

“reliability”
“reliability (index)”

..... so what, if any, is the relationship between p; and FS ??



CONSIDER TWO EXAMPLES OF SLOPE STABILITY

Find the factor of safety of a 2H:1V slope shown:

1.5H =0

T
¥
!

VI e

¢ =23°
' FS=1.5
Example 1 c _ 0.048
yH
Solution from charts, e.g. Michalowski (2002),
¢ =32°
Example 2 C _0.048 FS=2.0
yH

....S0 the slope in Example 2 is “safer”.....?
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Following a probabilistic analysis we may get more information

on the statistical distribution of the Factor of Safety in these Examples.

Suppose such an analysis reveals that:

for Example 1.
U =15, o =0.18

and for Example 2:
Hes =2.0, 05 =0.5
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Consider once more, the two slopes from a probabilistic standpoint
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Hes =1.9

Probability of Failure is given
by the area where FS < 1.0

Hes =2

—
1.0 Factor of Safety

The “safer” slope has a higher “probability of failure”!

As tempting as it is....direct comparison between
the Factor of Safety and the Probability of Failure
should be done with great care.
16



Geotechnical Analysis: The Traditional Approach

Bearing capacity P
l Strip footing
I
2% — B —
¢ c’

Que = C'N; + N, +§ N

e.g. Terzaghi’s
bearing capacity
equation

/4

CIult

l qult
Qi S
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Geotechnical Analysis: The Probabilistic Approach

Bearing capacity

P
l Strip footing
]
2% — B —
G 4 O-r
spatial Hian ¢ tang W cross
correlation & correlation

B 7
qult _ C'NC 4 qu + gerzgghls .
2 earing capacity
equation
Hq,, O tui Fundamental Question
\ Y i How does variability of
probability tables input affect variability of
l output?

Pt = P[qult < qall] 18



THREE LEVEL OF PROBABILISTIC ANALYSIS

1. Expert Panel
« Event Trees

2. First Order Methods
o First Order Reliability Methods (FORM)

3. Monte-Carlo
e Single random variable approach (SRV)
« Random Finite Element Method (RFEM)
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Level 1: Event Trees (e.qg. USBR)

Probability of embankment breach
due to foundation liguefaction

T0.0% Reservoir = 3452

70.0%

Layer Continuous Sta 2+50-5+50

30.0%
<]

Seismic Liquefaction

Earthquake Load Range

e - 03%0.0000.1x0.05
100010 o

0.030% Fdn Liquefa

99.956% ‘




Level 1: Event Trees (e.qg. USBR)

Probability of embankment breach
due to foundation liguefaction

0.001%

0.001%

Range 5 I

<]
<

Earthquake Load Range

0.002%

x0.3x0.0005®0.1x0.05

0.030% Fdn Ligquefa:

70.0% Reservair > 3452

70.0%

Layer Continuous Sta 2+50-5+50

30.0% _‘

Selsmic Liguefaction

09.956%
<]

U Range 1 I



Level 2: First Order Reliability Method (FORM)

Probabillity of :
bearing capacity failure Q. =1200 Square footing
D=1
Units
B — 2 in
kN and m
y =18
Q I
Random qa” — 28. 300
and
correlated
tan¢g' and ¢’ Pr = P[qult < 300]
Normal —_013
tan ¢ 0.577 (300) 0.086 Normal p ="
Fs = du 1071 5 ¢ (based on mean values) .

Qan



Level 2: First Order Reliability Method (FORM)

Consider a joint probabilty density function of ¢’ and tan ¢’ that might be used
In a geotechnical stabilty problems of bearing capacity or slope stability.

There is an infinite number of combinations of (¢, tan ¢")
that might result in failure (FS =1).

A vertical wall cutting across the hill
represents the locus of FS =1.

FORM will find

the most likely 0.0z | 5 e
values of ¢’ and tan ¢' T NOT FAILURE Lyl

to cause failure. - ‘ "FS>1 v

.e. the values closest . b NS A e 0.3
to the top of the hill. "\n\"‘*’ e

The probability of failure
Is the volume of the hill
on the failure side of the
FS =1line
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Order Reliability Index
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{I.E-— 7
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-:-1
24

FORM computes p; as the volume under the hill on the failure side of the straight line
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A B C D

First Order Reliability Method (FORM)

Example - Bearing Capacity of a Square Foundation

Deterministic Variables

D 1 Dimensions
B 2 m and kN
Vi 18

Qal 300

Probabilistic Variables

Variable Mean SD Value
c' 4 1 4.000
tang' 0577 0.086 0577

0.000 0.000

Inverse of Correlation

1.099 0.330
0.330 1.099

Limit State Function, M
2 569

E F G H | J K L N | O
Data=»Solver=»Solve
Pt
< »
Correlation v, ¢, tang)
Reduced ¢’ tang'
0.000 1 03
0.000 -0.3 1

q 18.00 F.. 161
2 6.13 F.y 1.20
N, 18.37 Fos 1.58
0.000 M. 3010 qu 1.14
0.000 N-:.- 22 35 F-:.-5 0.60
Qut 1070 8 F.q 1.00

i
p=ni J{x;;ﬂs} [C]—l{xf;l#f}

Reliability Index, B
0. 000

‘Limit State Function: M = Zut _q

qai

Probability of Failure
50 .00%



A B C D E F G H J
1 First Order Reliability Method (FORM)
2 Example - Bearing Capacity of a Square Foundation
3
4 Deterministic Variables
] D 1 Dimensions 25
4 B 2 m and kN
7 ¥ 18
8 Qal 300
) -
10
11 Probabilistic Variables Correlation V', ¢, tang’
12 Variable Mean SD Value Reduced c' tang'
13 c' 4 1 4. 402 0.402 1 0.3
14 tang’ 0577 0.086 0.334 -2.825 03 1
15 q 18.00
16 s 2.86
17 N, 550
18 0.402 -2.825 0.402 N. 13.49
19 -2.825 N, 4 34
20 Inverse of Correlation Qutt 300.0
21 1.099 0330 _ o lx—g
22 0330 1.099 g —} €] [T}
23
24 Limit State Function, M Reliability Index, B Probability of Failure
25 0.000 2 864 0.21%
26
27

% Limit State Function: M = Zur 1

30
31 Qm’f
32

Fee 1.41
Feg 1.20
Fee 1.33
Foo 1.16
F.. 0.60
Fua 1.00



te-Carlo (Single Random Variable)

Level 3: Mon

1 Generate Random Number with Correlation
2 c' Simulation X ¥ c' tang'  Correl.
3 Mean SD 1| -0.0875 | 0.0506 3.9125 0.5834|| -0.0006]
4 4 1 2 -1.\y61 -ZL6E8 249939 0250 D.]TEI
5 3 -0.0H ﬁZEZ 3.1?92 DIEE? -0 _[I'E
] tandg' 4 n159 4 4
7 | _Mean SD Font tan ¢’ = U . (:uc' —C )(:utan¢’ —tan ¢ ) ’
8 | 0577 0.086 tan¢ v v Y ki
9 'ﬂ =NDRM| e 7 O3 L0 - a3
10 |Correlation C D | E 3 0.53171 0.0326
11 ¢ - tang’ — R 3 0.6077  0.0119
12 10 -1.4207 -0.4429 2.5793 0.5773 -0.0005
13 11 1.1050 0.6429 5.1090 0.6011 0.0268
14 12 1.9514 -0.3754 5.9514 0.4959 -0.1583
15 13 0.3187 -0.0350 43187 0.5656  -0.0036
etc.
93990 99994  0.5783 -0.7350 45783 0.5018  -0.0435
99997 99995  1.2395 1.0989 5.2395 0.6352 0.0721
99998 99996 0.9341 -0.2687 4.9341 0.5309 -0.0431
99999 99997  0.6949 0.7553 4.6949 0.6210 0.0306
100000 99998 0.3911 1.9083 4.3911 0.7235 0.0573
100001 99999 -1.1486 -0.2408 2.8514 0.5869 -0.0113
100002 100000  1.2028 1.0816 5.2028 0.6347 0.0694
100003 Mean -0.0013 0.0002 3.9987 0.5771 )] -0.2992
100004 sD 1.0004 1.0050 I_]..DDEM'I D.DQ N
100005 M A
Check
Che: Check
pc’,tan¢'

B C

D

E

F

G H

:uc’ an(:utanq}' and Gtan¢’| 21




Compute bearing capacity of each Monte-Carlo simulation

tang'

0.4955
0.5343
0.5187
0.6747
0.4865
0.5121
0.7218
0.3083
0.7131

0.7169
0.5013
0.6025
0.5942
0.5011
0.5544
0.6016
0.6439
0.4219
0.6000
0.6745
0.5693
0.5773
0.0561

tang'

1 Bearing Capacity Problem
2 Simulation c'
3 1 5.8942
4 2 54478
5 3 4.1769
i 4 4,0859
7 5 4.5458
8 6 5.1020
9 7 24278
10 8 4.8523
11 9 2.9899
99991 99989 4.0135
99992 99990 3.8673
99993 99991 5.3660
99994 99992 2.4980
99995 99993 4.3333
99996 99994 3.4208
99997 99995 1.3321
99998 99996 5.0243
99999 99997 3.6576
100000 99998 4.6878
100001 99999 3.7898
100002 100000 | 3.4187
100003 7\Mean 3.9994
100004 sD 0.9979
100005 ntot
100006 c'
100007 4

0.577

&'
26.36
28.12
27.42
34.01
25.95
27.12
35.82
17.13
35.49

35.64
26.62
31.07
30.72
26.61
30.30
31.03
32.78
22.87
30.96
34.00
29.685

0.53233

N,
12,32
14.91
13.81
29.46
11.78
13.36
36.91
4.83
35.41

36.06
12.638
20.79
19.93
12.66
19.04
20.70
25.41
8.55
20.54
29.44
17.689

18.37

N
22.84
26.03
24.89
42,19
22.17
24,15
49.75
12,44
48.25

48.91
23.29
32.85
31.54
23.27
30.87
32.75
37.90
17.89
32.57
42,17
29.32

30.10

N,
13.20
17.00
15.36
41.10
12.44
14.71
54.73

3.60
51.93

53.14
13.71
26.26
24.93
13.89
23.42
26.11
34.00
3.06
25.85
41.07
21.28

22.35

Fes
1.54
1.57
1.56
1.70
1.53
1.55
1.74
1.39
1.73

1.74
1.54
1.63
1.63
1.54
1.62
1.63
1.67
1.48
1.63
1.70
1.60

1.61

F{E
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2

1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2

FEE~
1.50
1.53
1.52
1.67
1.49
1.51
1.72
1.31
1.71

1.72
1.50
1.60
1.59
1.50
1.58
1.60
1.64
1.42
1.60
1.67
1.57

q=

1.58

FEE
1.15
1.15
1.15
1.13
1.15
1.15
1.12
1.15
1.13

1.12
1.15
1.14
1.14
1.15
1.14
1.14
1.14
1.16
1.14
1.13
1.15

F-_.-s F'_.-n Qo # Fail
06 1 7737 O
0.6 1 9245 0
06 1 7934 0O
0.6 1 1799.7 0O
06 1 6834 O
0.6 1 8075 O
0.6 1 21296 O
06 1 2707 1 ]
0.6 1 2089.8 O
0.6 1 2236.8 0
0.6 1 709.8 0
0.6 1 13135 O
0.6 1 1079.7 0
0.6 1 7290 0O
0.6 1 1078.7 0O
0.6 1 10485 0O
0.6 1 16025 0
0.6 1 4564 0
0.6 1 1253.2 0O
0.6 1 17729 0
0.6 1 9950 0
1180.6] 212
547.5
Fie Fog Gt
0.6 1 1070.8

if (q,, <300,1,0)

o




9.0 100

jan]
]

3.894,0.57.

tan ¢’

D
L

jan]
Mo

as
Ha

Petang = -0.8

1.0 00 10 20 30 40 50 6.0 70 &0 90 10.0 -1.0 00 1.0 20 30 40 50 6.0 0 80 490 100
/
C C

The more positive the correlation between ¢’ and tang’, the higher the p,

s
sn]
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Level 3: The Random Finite Element Method (RFEM)
]

SiMULATION OF RANDOM FIELDS via LLOCAL
AVERAGE SUBDIVISION

ANERICAN SOCETY DF CIVL ENSINEERS

By Gordon A. Fenton' and Erik H. Vanmarcke,” Members, ASCE
“T This paper is part of the Journal of Engineering Mechanics, Vol. 116, No. 8,
RISK ASS%AENT August, 1990. ©ASCE, ISSN 0733-9399/90/0008-1733/$1.00 + $.15 per page.
-~ : Paper No. 24927.
GEOTECHNICAL ¢ |
ENGINEERING « Developed in the 1990s for advanced

probabilistic geotechnical analysis.

e Combines finite element and random field
methodologies in a Monte-Carlo framework.

* Properly accounts for (anisotropic) spatial
correlation structures in soil deposits.

 Properly accounts for element size through
local averaging.

 All programs are open-source.

GORDON A. FENTON and D. V. GRIFFITHS

_  Frequent short courses given for ASCE
| and internationally

« Now aconsiderable bibliography on the method
and included in proprietary codes. S0




Geotechnical Applications

Settlement Mine pillar Stability
al )(73‘,{
F=1

! H

= spatial
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3) Concluding Remarks

The natural variability of geomaterials makes them naturally suited to
analysis using statistical methods

Numerical discretization methods remain the most powerful methods for
modeling variable solls. In stability analysis, FE “seeks out” the critical
failure mechanism which is essential when dealing with random soils.

Direct comparison between FS and p; should be done with great care.

For probabilistic geotechnical analysis, engineers have a toolbox of
methods. Three levels of complexity have been identified, but only
RFEM properly accounts for spatial variability.

All the programs described in this seminar can be downloaded from
www.mines.edu/~vgriffit 34



http://www.mines.edu/%7Evgriffit

THANK YOU.
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