Risk Assessment in Geotechnical Engineering D.V. Griffiths

ASCE/G-I Orange County Chapter, Education Seminar Risk Assessment and Mitigation in Geotechnical Practice February 9th 2018

University of California at Santa Cruz

THE BANANA SLUG

".....in earthwork engineering the designer has to deal with bodies of earth with a complex structure and the properties of the material may vary from point to point."

K. Terzaghi

Prefce to the Inaugural Edition of *Géotechnique* (1948)

"Two specimens of soil taken at points a few feet apart, even if from a soil stratum which would be described as relatively homogeneous, may have properties differing many fold." <u>Donald W. Taylor</u> Introduction to *Fundamentals of Soil Mechanics* Wiley, (1948) It is only relatively recently however, that methodologies such as the Random Finite Element Method (RFEM) have been developed to explicitly model the variability discussed by Terzaghi and Taylor.

Bearing Capacity

Bearing failure of a silo in Manitoba, Canada (1913)

Outline

- 1. <u>Slope Stability Analysis by Finite Elements</u>
 - "Seeking out failure"
 - Variable soils
- 2. <u>Risk Assessment in Geotechnical Engineering</u>
 - Three levels of probabilistic analysis
 - > Event Trees
 - First Order Methods
 - Monte Carlo
 - Modeling spatial variability. The Random Finite Element Method (RFEM)
- 3. Concluding Remarks

1. <u>Slope Stability Analysis by Finite Elements</u>

• Compute elastic stresses and check for elements violating Coulomb

- Element with elastic stresses violating Coulomb (*M* < 0)
- Stress redistribution while maintaining global equilibrium

<u>Strength reduction to failure</u>

$$c'_{f} = \frac{c'}{SRF} \quad \phi'_{f} = \arctan\left(\frac{\tan\phi'}{SRF}\right)$$

At failure $FS \approx SRF$

"Seeking out failure"

James Bay Dike using Finite Elements

- Failure mechanism "seeks out" the path of least resistance.
- Slope fails "naturally" through zones where the shear strength is unable to resist the shear stresses.

Another example with a 2-layer undrained slope.

2) Risk Assessment in Geotechnical Engineering

Two slopes with the same factor of safety

WHAT ABOUT THE CONSEQUENCES OF FAILURE?

Definition of RISK

Probability of Failure *weighted* by the Consequences of Failure

<u>What is</u> <u>acceptable</u> <u>risk?</u>

Figure 5.7 F-N chart showing average annual risks posed by a variety of traditional divil facilities and other large structures or projects (Baecher 1982b).

A Risk Assessment study starts with a Probabilistic Analysis

Goal of a probabilistic geotechnical analysis.....?

To estimate the "Probability of failure (p_f)" as an alternative, or complement to, the traditional "Factor of Safety (*FS*)" Alternatives might be the "Probability of inadequate performance" "Probability of design failure"

Some investigators prefer a more optimistic terminology.....e.g.

"reliability" "reliability (index)"

.....so what, if any, is the relationship between p_f and FS ??

CONSIDER TWO EXAMPLES OF SLOPE STABILITY

Find the factor of safety of a 2H:1V slope shown:

 $\frac{c'}{\gamma H} = 0.048$

 $\phi' = 23^{\circ}$

d' - 32°

Solution from charts, e.g. Michalowski (2002),

Example 2

$$\frac{c'}{\gamma H} = 0.048 \qquad FS = 2.0$$

....so the slope in Example 2 is "safer"....?

Following a probabilistic analysis we may get more information on the statistical distribution of the Factor of Safety in these Examples.

Suppose such an analysis reveals that:

for Example 1: $\mu_{FS} = 1.5, \ \sigma_{FS} = 0.18$

and for Example 2: $\mu_{FS} = 2.0, \ \sigma_{FS} = 0.5$

Consider once more, the two slopes from a probabilistic standpoint

The "safer" slope has a higher "probability of failure"!

As tempting as it is....direct comparison between the Factor of Safety and the Probability of Failure should be done with great care.

Geotechnical Analysis: The Traditional Approach

Geotechnical Analysis: The Probabilistic Approach

THREE LEVEL OF PROBABILISTIC ANALYSIS

- 1. Expert Panel
 - Event Trees

2. First Order Methods

• First Order Reliability Methods (FORM)

3. Monte-Carlo

- Single random variable approach (SRV)
- Random Finite Element Method (RFEM)

Level 2: First Order Reliability Method (FORM)

Level 2: First Order Reliability Method (FORM)

Consider a joint probability density function of c' and $\tan \phi'$ that might be used in a geotechnical stability problems of bearing capacity or slope stability.

FORM computes p_f as the volume under the hill on the failure side of the straight line

	Α	В	С	D	E	F	G	Η		J	K	L	М	Ν	0	Р
1	First O	order F	Reliab	ility Metho	d (FORM	A)	Г				alwa					
2	Example	- Beari	ng Capa	acity of a Squ	are Found	lation	L	ala	2 201	ver 75	orve					
3																
4	Determin	nistic Va	riables													
5	D	1		Dimensions						/X/						
6	В	2		m and kN									D			
7	γ	18														
8	q _{all}	300										7 				
9											4					
10												В				
11		Pro	babilisti	c Variables			Corre	lation		γ', c', tanφ'						
12	Variable	Mean	SD	Value	Reduced		C'	tan∳'	1222		*********		*****	0101010	12	
13	с'	4	1	4.000	0.000		1	-0.3								
14	tan¢'	0.577	0.086	0.577	0.000		-0.3	1								
15											q	18.00		F_{cs}	1.61	
16											a _e	6.13		F_{cd}	1.20	
17											Na	18.37		Fas	1.58	
18		0.000	0.000			0.000					Nc	30.10		Fad	1.14	
19						0.000					N ₇	22.35		F _{vs}	0.60	
20		Inve	rse of C	orrelation							q _{ult}	1070.8		F _{yd}	1.00	
21		1.099	0.330					[r	μ	$-1[x - \mu]$						
22		0.330	1.099				$\beta = \min_{\alpha = 0}$	11 7	$\frac{\mu_i}{C}$	$\frac{n_1 \mu_1}{\sigma}$						
23							5-1	YL V	i							
24	Limit State Function, M				Reliabi	lity Ind	lex, β		Pro	bability of	Failure					
25			2.569				0.000				50.00%					
26																
27																
28	· -		G :	. F		1.0	q	alt	1 -							
29	L	1mit	Sta	te Func	tion:	M	= -		-1_							
30							a									
31							1	all								
32																

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	Ν	0	Р
1	First C	order F	Reliab	ility Metho	d (FORM	(N										
2	Example	- Beari	ng Cap	acity of a Squ	are Found	ation										
3	-															
4	Determin	nistic Va	ariables													
5	D	1		Dimensions						/X/						
6	В	2		m and kN									D			
7	γ	18														
8	q _{all}	300														
9																
10												В				
11		Prot	Probabilistic Variables Corre		lation		γ', c', tan¢'									
12	Variable	Mean	SD	Value	Reduced		c'	tan¢'				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10000	15	
13	с'	4	1	4.402	0.402		1	-0.3								
14	tanø'	0.577	0.086	0.334	-2.825		-0.3	1								
15											q	18.00		F_{cs}	1.41	
16											a _e	2.86		Fed	1.20	
17											Na	5 50		F	1 33	
18		0 402	-2 825			0 402					N.	13 49		F.J	1 16	
19		0.102	2.020			-2 825					N	4 34		F qa	0.60	
20		Inve	rse of (Correlation		2.020					Π	300.0		Γ _γ s	1.00	
20		1 000	0 220	Jon cladon				Г	T	г 1	Yult	500.0		• γd	1.00	
21		0.330	1 099				$\beta = \min_{\alpha} \beta$	$\frac{x_i}{1}$	$\frac{\mu_i}{C}$	$ -1 \frac{x_i - \mu_i}{1 - \mu_i}$						
23		0.000	1.000				g=0	YL o	i _	σ_i						
24		Limit St	tate Fu	nction. M		Reliabi	litv Ind	ex.β		Pro	bability o	f Failure				
25			0.000	,			2.864	, F	ノ		0.21%					
26																
27																
28				_		_	a	1.								
29	<u> </u>	imit	Sta	te Func	tion	M	= 1	<u>ult</u>	-1 -							
30			~ ~~				0		-							
31							9	all								
32																

Level 3: Monte-Carlo (Single Random Variable)

	A	В	C	D	E	F	G	H						
1			Generate Ra	andom N	umber wi	th Correlatio	n							
2	c'		Simulation	х	Y	c'	tan¢'	Correl.						
3	Mean	SD	1	-0.0875	0.0506	3.9125	0.5834	-0.0006						
4	4	1	2	-1.0061	-21688	2.939	0.4250	0.1529						
5			3	-0.0408	0.1292	3.9592	0.5887	-0.0005						
6	tan ¢'		4											
7	Mean	SD	Font	t	an <i>d</i> ' =		$(\mu_{c'} - c)$	\mathcal{M}_{tang}	$\psi' = \tan \psi _{\mu}$					
8	0.577	0.086	£ NI		γ	ρ tan $\phi' \vdash$		v	<u> </u>					
9			<i>Jx</i> = N			, , , , , , , , , , , , , , , , , , ,	0.6526	-0.0789						
10	Correlation		С	D		F ,	0.5171	0.0326						
11	c' - tan ¢'		-				0.6077	0.0119						
12	-0.3		10	-1.4207	-0.4429	2.5793	0.5773	-0.0005						
13			11	1.1090	0.6429	5.1090	0.6011	0.0268						
14			12	1.9514	-0.3754	5.9514	0.4959	-0.1583						

etc.

99996		99994	0.5783	-0.7350	4.5783	0.5018	-0.0435
99997		99995	1.2395	1.0989	5.2395	0.6352	0.0721
99998		99996	0.9341	-0.2687	4.9341	0.5309	-0.0431
99999		99997	0.6949	0.7553	4.6949	0.6210	0.0306
100000		99998	0.3911	1.9083	4.3911	0.7235	0.0573
100001		99999	-1.1486	-0.2408	2.8514	0.5869	-0.0113
100002		100000	1.2028	1.0816	5.2028	0.6347	0.0694
100003		Mean	-0.0013	0.0002	3.9987	0.5771	-0.2992
100004		SD	1.0004	1.0050	1.0004	0.0864	
100005					\uparrow	↑	
							Check
					Che	Check	
							$\rho_{c' \tan \phi'}$
					$ \mu_{c'} $ and	$u_{\tan \phi'}$ and ϕ'	$\sigma_{\tan\phi'}$
						Γ	· r

Compute bearing capacity of each Monte-Carlo simulation

1	Bearing Cap	acity Pro	oblem													
2	Simulation	C'	tan¢'	φ'	Nq	Nc	Nγ	Fcs	F_{cd}	Fqs	F _{qd}	$F_{\gamma s}$	$F_{\gamma d}$	q _{ult}	# Fail	
3	1	5.8942	0.4955	26.36	12.32	22.84	13.20	1.54	1.2	1.50	1.15	0.6	1	773.7	0	
4	2	5.4478	0.5343	28.12	14.91	26.03	17.00	1.57	1.2	1.53	1.15	0.6	1	924.5	0	
5	3	4.1769	0.5187	27.42	13.81	24.69	15.36	1.56	1.2	1.52	1.15	0.6	1	793.4	0	
6	4	4.0859	0.6747	34.01	29.46	42.19	41.10	1.70	1.2	1.67	1.13	0.6	1	1799.7	0	if(a < 200.1.0)
7	5	4.5458	0.4865	25.95	11.78	22.17	12.44	1.53	1.2	1.49	1.15	0.6	1	683.4	0	$ \Pi(q_{ult} < 500, 1, 0) $
8	6	5.1030	0.5121	27.12	13.36	24.15	14.71	1.55	1.2	1.51	1.15	0.6	1	807.5	0	
9	7	2.4278	0.7218	35.82	36.91	49.75	54.73	1.74	1.2	1.72	1.12	0.6	1	2129.6	0	\checkmark
10	8	4.8523	0.3083	17.13	4.83	12.44	3.60	1.39	1.2	1.31	1.15	0.6	1	270.7	1	
11	9	2.9899	0.7131	35.49	35.41	48.25	51.93	1.73	1.2	1.71	1.13	0.6	1	2089.8	0	

99991	99	989	4.0135	0.7169	35.64	36.06	48.91	53.14	1.74	1.2	1.72	1.12	0.6	1	2236.8	0	
99992	99	990	3.8673	0.5013	26.62	12.68	23.29	13.71	1.54	1.2	1.50	1.15	0.6	1	709.8	0	
99993	99	991	5.3660	0.6025	31.07	20.79	32.85	26.26	1.63	1.2	1.60	1.14	0.6	1	1313.5	0	
99994	99992		2.4980	0.5942	30.72	19.98	31.94	24.93	1.63	1.2	1.59	1.14	0.6	1	1079.7	0	
99995	99993		4.3333	0.5011	26.61	12.66	23.27	13.69	1.54	1.2	1.50	1.15	0.6	1	729.0	0	
99996	99994		3.4208	0.5844	30.30	19.04	30.87	23.42	1.62	1.2	1.58	1.14	0.6	1	1078.7	0	
99997	99	995	1.3321	0.6016	31.03	20.70	32.75	26.11	1.63	1.2	1.60	1.14	0.6	1	1048.5	0	
99998	99	996	5.0243	0.6439	32.78	25.41	37.90	34.00	1.67	1.2	1.64	1.14	0.6	1	1602.5	0	
99999	99	997	3.6576	0.4219	22.87	8.55	17.89	8.06	1.48	1.2	1.42	1.16	0.6	1	456.4	0	
100000	99	998	4.6878	0.6000	30.96	20.54	32.57	25.85	1.63	1.2	1.60	1.14	0.6	1	1253.2	0	$ n_{f} $
100001	99	999	3.7898	0.6745	34.00	29.44	42.17	41.07	1.70	1.2	1.67	1.13	0.6	1	1772.9	0	
100002	100	000	3.4187	0.5693	29.65	17.69	29.32	21.28	1.60	1.2	1.57	1.15	0.6	1	995.0	0	ł
100003	1 M	ean	3.9994	0.5773											1180.6	212	
100004	_ /	SD	0.9979	0.0861											547.5		$ n_{c} = n_{c}/n$
100005	n_{\star}																<u>P</u> f P f to t
100006			c'	tan¢'	φ'	Nq	Nc	Nγ	Fcs	F_{cd}	Fqs	F _{qd}	$E_{\gamma s}$	F _{γd}	q _{ult}	p _f	
100007			4	0.577	0.5233	18.37	30.10	22.35	1.61	1.2	1.58	1.14	0.6	1	1070.8	0.21%	

The more positive the correlation between c' and $\tan \phi'$, the higher the p_f

Level 3: The Random Finite Element Method (RFEM)

SIMULATION OF RANDOM FIELDS VIA LOCAL AVERAGE SUBDIVISION

By Gordon A. Fenton¹ and Erik H. Vanmarcke,² Members, ASCE

This paper is part of the *Journal of Engineering Mechanics*, Vol. 116, No. 8, August, 1990. ©ASCE, ISSN 0733-9399/90/0008-1733/\$1.00 + \$.15 per page. Paper No. 24927.

- Developed in the 1990s for advanced probabilistic geotechnical analysis.
- Combines finite element and random field methodologies in a Monte-Carlo framework.
- Properly accounts for (anisotropic) spatial correlation structures in soil deposits.
- Properly accounts for element size through local averaging.
- All programs are open-source.
- Frequent short courses given for ASCE and internationally
- Now a considerable bibliography on the method and included in proprietary codes. 30

Geotechnical Applications

Earth Pressures

Slope Stability

3) Concluding Remarks

- The natural variability of geomaterials makes them naturally suited to analysis using statistical methods
- Numerical discretization methods remain the most powerful methods for modeling variable soils. In stability analysis, FE "seeks out" the critical failure mechanism which is essential when dealing with random soils.
- Direct comparison between FS and p_f should be done with great care.
- For probabilistic geotechnical analysis, engineers have a toolbox of methods. Three levels of complexity have been identified, but only RFEM properly accounts for spatial variability.

All the programs described in this seminar can be downloaded from www.mines.edu/~vgriffit

THANK YOU.

