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Levees

Definition: man-made or | T—
natural embankments
along rivers or water
bodies

Purpose: flood
protection

American River, Sacramento

Can be intermittently
loaded

Levees

Definition: man-made o
natural embankments
along rivers or water
bodies

Purpose: flood
protection

Sacramento-San Joaquin Delta

Can be intermittently or
continuously loaded
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Levee Taxonomy

Series system when
impounding water

Failure of any link
constitutes system
failure

System: assemblage of
levees providing flood
protection

Levee Taxonomy

Reach: length of levee
with uniform capacity and
demand distributions

Physics-based vs
legal/jurisdictional




Characteristic length: length of levee system components
between which statistical independence may be
assumed (unknown a priori)

Characteristic
Length

/Reach
Levee Taxonomy e sy

Segment: length of levee with uniform capacity
(represented by cross-section)

< Reach >
Segment
“““““““ > =<
Characteristic
Length
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Question addressed here:

How to assess seismic risk for levee systems?

Current & recommended practices

Key concepts

QOutline

Levee system taxonomy
Segment risk

System risk

Summary
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Segment

Deformation mechanisms
Consequent risk
International guidelines
Empirical fragility model

Segment

Deformation Mechanisms

Deformation/slumping
of levee fill

Miller and Roycroft 2004
Sasaki 2009

Sasaki et al. 2012

Green et al. 2011

Kwak et al., 2016a
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Segment

Deformation Mechanisms

Sliding/bearing failure

Miiller and Roycroft 2004
Sasaki 2009

Sasaki et al. 2012

Green et al. 2011

Kwak et al., 2016a

Segment

Deformation Mechanisms

Settlement of

. foundation soils

Miller and Roycroft 2004
Sasaki 2009

Sasaki et al. 2012

Green et al. 2011

Kwak et al., 2016a
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Segment
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Segment
Consequent Risk

Intermittent impoundment:
potentially low risk
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Segment
Consequent Risk

Continuous impoundment:
high risk from overtopping
and/or internal erosion

Segment

International Guidelines

EQS paper describes provisions in various guidelines, using consistent framework.

Recommended best practices summarized here...
Zimmaro et al. 2017a
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International Guidelines

Framework (segments):

Screening

International Guidelines

Framework (segments):

Screening

Site characterization
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International Guidelines

Framework (segments):

Screening
Site characterization

Ground motion hazard

PSHA or DSHA
Site response

Flood return period

International Guidelines

Framework (segments):

Screening
Site characterization
Ground motion hazard

Strength loss potential

Liquefaction

Cyclic softening
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International Guidelines

Framework (segments):

Screening
Site characterization

Ground motion hazard

Strength loss potential Flow slide: limit equilibrium

Deformations: Newmark or

Flow slides and ground o
similar

deformations
Seismic compression

Accelerated creep (peat)

Accelerated creep
in peat

Shear
strain, y

Pore

~
S ——

strain, g, pressure,r,

Volumetric

Time
Shafiee et al. 2015
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International Guidelines

Framework (segments):

Screening

Site characterization
Ground motion hazard
Strength loss potential
Flow slides and ground

deformations Prepare for post-event repair

Risk mitigation Pre-event repair

International Guidelines

Framework (segments):

Screening

Site characterization Hazard is computed at

Ground motion hazard location of segment

Strength loss potential Variability / uncertainty
in ground motion

Flow slides and ground
deformations

Risk mitigation

2/13/2018
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International Guidelines

Framework (segments):

Screening

Site characterization
Ground motion hazard
Strength loss potential

Flow slides and ground
deformations

Risk mitigation

Predicted using
geotechnical models

Uncertainty often
undefined

Fragility poorly
guantified

Levee Fragility

Prob. of Damage
Measure DM > dm

Ground Motion
Intensity Measure (IM)
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Levee Fragility
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Intensity Measure (IM)
Levee Fragility
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Ground Motion
Intensity Measure (IM)
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Levee Fragility

Prob. of Damage
Measure DM > dm

Ground Motion
Intensity Measure (IM)

Segment

Empirical Fragility Model

e

AR EIRRIC Bl &

QEMﬂN$%ﬁﬁﬂwmgﬂﬁtﬁﬂﬁﬂ.

Observed damage following
2004 and 2007 events

Model conditioned on
ground motion, water level,
geology

Fragility conditioned on
damage level (DL)

¥ A
£

¥

{ LPRE
% '3

SR SR 5 5

MLIT-SWO 2008
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Segment

Empirical Fragility Model

1 N M A |
Tps _- —di0 -
a —di1
Qpg — -
2
3 0.4 n
8 4 :
& 02 /’/o/"‘

0 e A

10 100
PGV (cmis)
High water
Poorly consolidated sediments
Kwak et al. (2016a)
Segment
Empirical Fragility Model

1 1
S 0.8
A
-
Qpg —
2
3 0.4
£
So024

0

10

PGV (cmis)

High water
Poorly consolidated sediments

Kwak et al. (2016a)
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Segment

Empirical Fragility Model

1 N M A | n
T 08
L] -
-
Qpg —
2 |
304 -
m
§ -
£02
0 — T
10 100
PGV (cmis)
High water

Poorly consolidated sediments

Kwak et al. (2016a)

Segment

Empirical F

1 L e sl i

T 0.8 =
A - -
|

Qpg — =
2 i L
504 —
[}

g - =
& 0.2 —
0 T =TT T
10 100

PGV (cmls)

Applicability: Intermittently loaded levees with predominantly granular
foundation soils (not soft clays or peats)

Curves represent capacity distributions in PGV space Kwakeet al. (20160)

2/13/2018

18



Example: Segment Fragility

X

«-—

Levee system  mm =

- = R,;=5km

v

Highland Lowland

Strike-slip fault 7
= 1
1

Water body

Example: Segment Fragility

X

«-—

Levee system  mm =

R =5km

v

Highland Lowland

Strike-slip fault 7
= 1
1

Water body
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Example: Segment Fragility

0.6 1 1
Fragility from model o
5’0.4 - =
Fixed median IM of PGV = z
46 cm/s, P;|E=0.016 %o.a 4 L
0 LA TR AL

-

10 100
PGV (cmis)

Example: Segment Fragility

0.6 1 1
Fragility from model o
5’0.4 -1 -
Fixed median IM of PGV = z
46 cm/s, P¢|E=0.016 §o2- -
Variable IM — convolve B 0 :

fragility with IM distribution

P IE=[f (YIE)P (v)dy

i
o

o
2]
1
T

P|E=0.035

Probability density, fy)
(=} =1
(%] N
1 1
T T

o

YT T T

10 100
Y: PGV (cmis)
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Outline

Levee system taxonomy

Segment risk
e System risk
* Summary

System Risk

* Concepts of limit state and spatial correlation
* Past practice

« Recommended approaches

2/13/2018
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Demand, D

System Risk
Limit State Distribution

Limit State, Z=C-D

Y
\

Capacity, C
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System Risk

Correlation of Limit States

Characteristic
Length

Perfect correlation: A A

Segment j

Segment i
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System Risk

Correlation of Limit States

< Reach >
S;gm;_nt
SSSSSSSSSSSSSS SISSSSSSSS - SSSsss=m=mss=m=mm=
<>
Length
?
Zero correlation: A A
Segment i Segment j
System Risk
Significance of Correlation
Perfect correlation "’”{' 10 segments
_ P;..,=0.035
Prys [E= maX[Pf seq | E] R @ NS = Jseq
=

P;.,|E =0.035

Rg=5km

Zero correlation
Pf,sys | E ZI_H(I_ Pf,seg | E)
i=1

P;.,s|E=0.30

Strike-slip fault 5
M=E65

Water body

Ang and Tang, 2007
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System Risk
Correlation Models

Demand, p,:

S a
Derived from ground motions 2 ‘°§
Depends on geologic conditions 5 ©
© Pc
Ca pacity, Pc: Distance, km

Derived from field performance (or assumed)
Depends on damage level

Jayaram and Baker, 2009
Kwak et al., 2016b

System Risk

Previous Approaches, Seismic Applications

*  South Napa Earthquake Epicenter = UCERF3 faults (FM 3.1)
0 121,50

Demand taken from hazard

maps

* Assumes essentially perfect
correlation

PGV (cm/s)

0 67.5 135
Deverel et al. 2016
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24



System Risk

Previous Approaches, Seismic Applications

Demand taken from hazard
Pp<1
maps

* Assumes essentially perfect
correlation

System Risk

Previous Approaches, Seismic Applications

Demand taken from hazard

maps

* Assumes essentially perfect
correlation

Capacity taken from analysis of

representative section within

reach Bias: Depends on

L vs. L
» Perfect correlation within reaches Reach Char

Unknown variability

» Zero correlation between reaches
Zimmaro et al. 2017a
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System Risk

Recommended Approaches

Monte Carlo Simulation

Segment-specific demand and capacity models
Correlation Models

Cholesky decomposition

System fails if any segment has Z< 0

Repeat N times, evaluate P,

Kwak et al. 2016b

System Risk

Recommended Approaches

Level Crossing Statistics (LCS)

Used previously in Netherlands for flood applications
Reach-specific limit state function

FORM to evaluate segment failure probabilities

LCS to evaluate p; and P, | E

If Lepar < Lreachy COMbine reaches with zero correlation

Vrouwenvelder, 2006
Jongejan and Maaskant, 2016
Zimmaro et al. 2017b

2/13/2018
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System Risk

Recommended Approaches

Both approaches require event conditioning. Why?

Earthquakes occur one at a time

PSHA maps: many sources for each site, with strong
spatial correlation

.. system risk should be computed at the event level

Can be repeated across multiple events

Example

Town

Levee system —

R =5km

v

Highland Lowland

Strike-slip fault 7
M=65

Pyseq = 0.035
Prs,s =0.24

Water body

2/13/2018
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Summary

* Risk of distributed systems requires models for
hazard, fragility, and spatial correlations (of
demands and capacities)

* Most previous work for seismic applications
uses ad hoc approximations and judgement

* Application requires scenario-based demands

* Pp”Pc

* Two recommended procedures: LCS more
computationally efficient
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